Study of Basic OPAMP Configurations and Simple Mathematical Operations

Objectives:

- (I) Study of the inverting amplifier configuration and to find its gain
- (II) Study of the non-inverting amplifier configuration and to find its gain
- (III) Study simple mathematical operation and design an averaging amplifier

Components: OPAMP 741 chip, Resistors, Oscilloscope, DC voltage source, Bread board

Theory: Please refer the supplementary note.

Circuit Diagram:

Inverting amplifier

Non-inverting amplifier

Procedure:

(I) Inverting amplifier

- 1. Configure the circuit as shown in the circuit diagram. Connect the pins 7 and 4 of the IC to the $\pm 15V$ output terminals of the D.C. power supply. Connect the 0V terminal to ground. Choose $R_{in} = 1K\Omega$ and $R_f = 10K\Omega$. Measure the resistance values with multimeter and calculate gain, $-(R_f/R_{in})$. Connect a resistor R_3 (= $R_{in} || R_f \approx R_{in}$) as shown in the circuit diagram so as to minimize offset due to input bias current.
- 2. Connect one of the output terminals of the D.C. power supply (0-30V) at the inverting input (pin no. 2).
- 3. Switch on the power supply and apply different voltages in the range 0- 1.5V (why?) in steps of 0.2 V at the inverting terminal. Measure this input using a digital multimeter.
- 4. Measure the corresponding output voltages with the multimeter and calculate gain V_o/V_{in}. Note the sign of the output voltage.
- 5. Now, replace R_f by 50K Ω . Measure the resistance value with multimeter and calculate gain, -(R_f/R_{in}).
- 6. Apply different voltages in the range 0- 0.5V in steps of 0.1 V at the inverting terminal. Measure this input using a digital multimeter.
- 7. Measure the corresponding output voltages with the multimeter and calculate gain V_0/V_{in} .
- 8. Plot graphs for V $_{in} \sim V_o$ for both the values of $R_F.$
- 9. You may also use a function generator to give a sinusoidal input and notice the output waveform using an oscilloscope.

(II) Non-inverting amplifier

- 1. Configure the circuit as shown in the circuit diagram with $R_{in} = 1K\Omega$ and $R_f = 10K\Omega$. using the measured value of resistance calculate gain, $1+ (R_f/R_{in})$.
- 2. Connect one of the output terminals of the D.C. power supply (0-30V) at the **non-inverting input (pin no. 3)**.
- 3. Repeat steps 3 onwards of procedure (I) with inputs applied at non-inverting terminal.

Observations

Table (I):

Obs. No.	Input (V)	$-\frac{R_f}{R_{in}} = \dots$			$-\frac{R_f}{R_{in}} =$		
		Output (V)	Gain Vo/Vin	Average	Output (V)	Gain Vo/Vin	Average
	0.2						
	0.4						

Table (For II):

Obs. No.	Input (V)	1-	$+\frac{R_f}{R_{in}} =$		1.	$+\frac{R_f}{R_{in}}=$	
		Output	Gain	Average	Output	Gain	Average
		(V)	V_o/V_{in}		(V)	V _o /V _{in}	
1	0.1						
2	0.2						
	•••						

(III) Simple mathematical operations using OPAMP

a. To study OPAMP as summing amplifier

Circuit Diagram:

Procedure:

- 1. Assemble the circuit as shown in circuit diagram choosing R_1 , R_2 , $R_f = 10K\Omega$ each. Use $0 \pm 15V$ terminal output to provide supply to the IC.
- 2. Using 0 30V and 5V terminals of the power supply, apply two inputs at the inverting terminal. Measure each input with multimeter.
- 3. Measure the output with multimeter for at least five input combinations.
- 4. Compare the output with the sum of the two inputs.

Observations:

Obs.No	V1 (V)	V ₂ (V)	V _{out} (V)	$V_1 + V_2$ (V)
1				
••				
5				

b. To study OPAMP as difference amplifier

Circuit Diagram:

Procedure:

- 1. Assemble the circuit as shown in circuit diagram choosing R_1 , R_2 , R_3 , $R_f = 10K\Omega$ each. Use 0- $\pm 15V$ terminal output to provide supply to the IC.
- 2. Using 0 30V and 5V terminals of the power supply, apply two inputs, one at the inverting and the other at the non-inverting terminal. Measure each input with multimeter.
- 3. Measure output with multimeter for at least five input combinations.
- 4. Compare the output with the difference of the two inputs.

Observations:

Obs.No	V1 (V)	V ₂ (V)	V _{out} (V)	$V_2 - V_1$ (V)
1				
••				
5				

c. Inverting amplifier configuration of OPAMP is nothing but multiplication or division of input voltage with a number equal to Rf/R₁. With the knowledge of division and addition design an averaging amplifier of inputs V₁ and V₂ and tabulate.

Conclusions: